Destroying LA for “2012”

Nafees Bin Zafar
Ramprasad Sampath

David Stephens
Ken Museth

Marten Larsson
Dennis Blakey

Michael Clive
Robby Thomas

Ryo Sakaguchi
Brian Gazdik

Digital Domain

For the movie “2012”, Digital Domain was tasked with destroying
its home city of Los Angeles... digitally. The destruction effects
would be seen up close, and there had to be a lot of it. The solu-
tion involved turning to geometric fracturing tools, and rigid body
dynamics (RBD) simulations. However, this sequence was going
to require two orders of magnitude more detail than we had accom-
plished before.

Destruction Toolset

Organic fracture shapes such as the rock formations in the fissure
wall could be created using high resolution level set techniques
(CrackTastic). However when fracturing buildings this approach
tends to produce too many polygons in order to maintain sharp
corners and seamless fracture lines. Hence we also developed a
polygon-based fracture tool dubbed PolyBuster. A user controlled
distribution of points defined 3D voronoi cells which served as cut-
ting planes. The input geometry is then iteratively cut, and the
newly opened faces are capped. Various rendertime displacements
were employed to introduce additional geometric details on the ex-
posed faces.

Managing upwards of 300,000 RBD objects stresses the limits of
RBD solvers and animation systems. The available third party
solutions would not meet our requirements. Several physics en-
gine SDKs used in video games fit our performance and scalabil-
ity needs. We chose to use the Bullet Physics engine because it
was open source and had a very active user community. Our RBD
toolset, called Drop, was implemented as a set of Surface OPerator
(SOP) plugins to the Houdini animation software.

All the objects in a simulation are input as triangle meshes, and
given a unique ID. Instead of introducing a custom data type to rep-
resent an RBD object, we generate a single point for each object
with attributes for RBD control parameters such as mass and veloc-
ity. This allows artists to manipulate objects and simulation param-
eters using built in Houdini operators, and avoids the overhead of
processing all the geometry for that object. The object geometry is
fed directly into the final solver operation. The solver node outputs
control points containing the object transforms and body state. The
output transforms are then applied back to the input geometry or to
high resolution render geometry.

Airport and Fissure Sequence

The main simulation components in the Airport and fissure se-
quence were the ground, roads, buildings, and street level elements
like trees and cars. These vastly different types of objects had to
behave in an art directed way. In controlling how an object moves
we were essentially trying to represent elastic deformation behav-
ior with rigid bodies. This kind of behavior can be approximated
by the use of constraints. Bullet provided many different types of
constraints such as point-to-point, and hinge types. Each constraint
was represented in our system as a point with control attributes and
IDs of the objects they constrained. By controlling placement of
constraints and setting their intrinsic parameters, we could create

Copyright is held by the author / owner(s).
SIGGRAPH 2010, Los Angeles, California, July 25 — 29, 2010.
ISBN 978-1-4503-0210-4/10/0007

many different material behaviors. For example, rigging a building
involved fracturing the building geometry, then seeding point-to-
point constraints between the pieces based on nearest neighbors.
Additional constraints could be placed to control zones of collapse.
A final set of constraints would bind the bottom of the object to the
ground. Adding a little bit of noise to the constraint parameters pro-
vided very natural spatial variations for the destruction animation.
We had to enhance the constraint system in Bullet by adding dy-
namic constraint parameter updates, including breaking constraints
based on displacement or constraint restoration impulse limits.

Rigging vehicles and trees involved a specific geometric arrange-
ment of constraints. We built several different vehicle rigs to rep-
resent different types of cars and buses. The car simulation results
were then applied to the specific car models. Results of the tree
simulations were applied to the tree geometry with a lattice based
deformer.

While every building had a unique simulation, the fissure wall sec-
tions were more generic and less visually recognizable. Therefore
we created a reusable library of simulations. Each library element
was a long simulation (800+ frames) of a square patch of ground
collapsing. The artists would lay down curves to indicate the fis-
sure path in their shot, with each curve segment indicating which
library element to load at that location.

Collapsing Downtown LA

The buildings in downtown LA had to collapse in a very specific
way. Some of this control could be achieved with the constraints,
but in certain cases we had to incorporate keyframed animation.
The transition from keyframed animation to simulation was han-
dled dynamically per object by thresholding collision impact mag-
nitudes. Though we had to represent a wide range of object sizes,
the effect of small objects on a large one is negligible. In order
to optimize simulation runtimes we used a layering approach. The
output of the large object simulations would be reimported into a
simulation for smaller objects. We also added information about the
maximum and total collision based impulses on the simulation out-
put points, and generated information about constraint states. This
data was then used to determine location and timing of the smaller
objects. For example, broken constraints from the building simula-
tions were used to trigger particle simulations to represent broken
shards of glass. Each building required simulating 50k to 100k dy-
namic objects, and each frame required less than 2 minutes.

Conclusions

Our goal was to create an efficient set of tools, and a flexible artist
workflow to address 90% of our needs. Utilizing a robust and opti-
mized RBD system and reducing execution of the operator network
in Houdini gave us very fast simulations. The point based data rep-
resentation reduced data processing in Houdini and provided inter-
active workflow for the artists. It also allowed them to build a lot of
custom art direction tools. Methods of optimizing geometry for the
simulation will lead to faster artist throughput.



